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Abstract — The level of automation in ground combat 
vehicles being developed for the Army’s objective force is 
greatly increased over the Army’s legacy force. The 
development of these intelligent ground vehicles (IGV) 
requires a thorough understanding of all of the intelligent 
behavior that needs to be exhibited by the system so that 
designers can allocate functionality to humans and/or 
machines. In this paper, we describe the joint effort 
currently being performed by DCS Corporation and NIST to 
develop an intelligent ground vehicle (IGV) ontology using 
Protégé. The goal of this effort is to develop a common, 
implementation-independent, extendable knowledge source 
for researchers and developers in the intelligent vehicle 
community. This paper describes the methodology we have 
used to identify knowledge in this domain and an approach 
to capture and visualize the knowledge in the ontology. 

 

1. INTRODUCTION 
The level of automation in ground combat vehicles being 
developed for the Army’s objective force is greatly 
increased over the Army’s legacy force.  This automation is 
taking many forms in emerging ground vehicles; varying 
from operator decision aides to fully autonomous unmanned 
systems.  The development of these intelligent ground 
vehicles (IGV) requires a thorough understanding of all of 
the intelligent behavior that needs to be exhibited by the 
system so that designers can allocate functionality to 
humans and/or machines.  Tradition system specification 
techniques focused heavily on the functional description of 
the major systems of a vehicle and implicitly assumed that a 
well-trained crew would operate these systems in a manner 
to accomplish the tactical mission assigned to the vehicle.   
In order to allocate some or all of these intelligent behaviors 
to machines in future ground vehicles, it is necessary to be 
able to identify and describe these intelligent behaviors. 
 
The U.S. Army Tank Automotive Research, Development 
and Engineering Center (TARDEC) has funded DCS 
Corporation and the National Institute of Standards and 
Technology (NIST) to explore approaches to model the 
ground vehicle domain with explicit representation of 
intelligent behavior.  This exploration has included the 
analysis of modeling languages (i.e., UML, DAML, OWL) 
as well as reference architectures.  A major component of 
this effort has been the development of an IGV Ontology. 
 
 
 

NIST and DCS Corporation have taken the view that an 
IGV can be viewed as a multi-agent system, where agents 
can represent components within the vehicle  (e.g., a 
propulsion system, a lethality system, etc). In addition, an 
IGV, as a whole, can serve as a single agent within a troop, 
platoon, or section, where multiple IGVs are present. In 
order for a group of agents to work together to accomplish a 
common goal, they must be able to clearly and 
unambiguously communicate with each other without the 
fear of loss of information or misinterpretation. We have 
used the IGV Ontology to specify a common lexicon and 
semantics to address this challenge. 
 
In this paper, we describe the joint effort currently being 
performed by DCS Corporation and NIST to develop an 
intelligent ground vehicle (IGV) ontology using Protégé. 
The goal of this effort is to develop a common, 
implementation-independent, extendable knowledge source 
for researchers and developers in the intelligent vehicle 
community that will: 
 
• Provide a standard set of domain concepts along with 

their attributes and inter-relations; 
• Allow for knowledge capture and reuse; 
• Facilitate systems specification, design, and integration, 

and; 
• Accelerate research in the field. 
 
This paper describes the methodology we have used to 
identify knowledge in this domain and an approach we have 
used to capture and visualize the knowledge in an ontology. 
Section 2 describes the Real-time Control System (RCS) 
and its underlying methodology that we use to determine the 
information requirements to model in the ontology. Section 
3 describes the IGV Ontology. Section 4 describes our 
current status. Section 5 concludes the paper. 
 

2. THE REAL-TIME CONTROL SYSTEM (RCS) 
 
2.1. The Methodology  
 
One of the first steps in any ontology development effort is 
to identify the information requirements that are necessary 
to be modeled in the ontology. For this effort, we used the 
RCS (Real-time Control System) methodology for 
determine these requirements. 
 
RCS was developed by NIST for the control of intelligent 
systems, and has recently been used to control intelligent 
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vehicles within military environment [1].  The RCS 
methodology concentrates on the task decomposition as the 
primary means of understanding the knowledge required for 
intelligent control.  This approach is shown in Figure 1 and 
begins with the knowledge “mining” activities to retrieve 
knowledge from subject matter experts (SMEs).  The 
gathering and formatting of this knowledge can be 
summarized in six steps, each of which follows from the 
knowledge uncovered by the previous steps:  
 

1) The first step involves an intensive analysis of 
domain knowledge from manuals and subject 
matter experts (SMEs), especially using scenarios 
of particular subtask operations.  The output of the 
effort is a structuring of this knowledge into a task 
decision tree form of simpler and simpler 
commands (actions/verbs) at simpler and simpler 
levels of task description. 

2) This step defines the hierarchical organization of 
agent control modules that will execute these layers 
of commands in such a manner as to reasonably 
accomplish the tasks.  This is the same as coming 
up with a business or military organizational 
structure of agent control modules (people, 
soldiers) to accomplish the desired tasks.  This step 
forces a more formal structuring of all of the 

subtask activities as well as defining the execution 
structure. 

3) This step clarifies the processing of each agent’s 
input command through the use of rules to identify 
all of the task branching conditions with their 
corresponding output commands. Each of these 
command decompositions at each agent control 
module will be represented in the form of a state-
table of ordered production rules (which is an 
implementation of an extended finite state machine 
(FSM)).  The sequence of simpler output 
commands required to accomplish the input 
command and the named situations (branching 
conditions) that transition the state-table to the next 
output command are the primary knowledge 
represented in this step. 

4) In this step, the above named situations that are the 
task branching conditions are defined in great 
detail in terms of their dependencies on world and 
task states.  This step attempts to define the 
detailed precursor states of the world that cause a 
particular situation to be true.  

5) In this step, we identify and name all of the objects 
and entities together with their particular features 
and attributes that are relevant to defining the 
above world states and situations. 

 
Figure 1 - RCS Methodology 
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6) The last step is to use the context of the particular 
task activities to establish the distances and, 
therefore, the resolutions at which the above 
objects and entities must be measured and 
recognized by the sensory processing component.  
This step establishes a set of requirements and/or 
specifications for the sensor system at the level of 
each separate subtask activity.  

 
More details about this methodology can be found in [2]. 
 
The outputs of this methodology are a set of information 
requirements, specifically, information about tasks (step 1), 
agents (step 2), plans to accomplish tasks (step 3), 
conditions and situations (step 4), environmental entities 
(step 5), and attributes of those entities (step 6). These 
information requirements serve as the input for the ontology 
described in the Section 3. 
 
2.2. The Scenario 

This effort uses knowledge derived from the task analysis of 
scenarios of a light cavalry troop’s execution of a Conduct 
Tactical Road March to Assembly Area mission, 
independent if the activity is performed by man or machine. 
In particular, we have analyzed the part of this mission that 
focuses on the route reconnaissance component by the Scout 
Platoon.  This is done through scenarios that are examined 
at more and more detailed levels starting at the Troop 
Commander Level, which will perform a number of 
planning activities to better identify the priority information 
items of the route, to define the march column organization, 
and to specify the formation and movement technique.  The 
Troop Commander will then dispatch a scout platoon to 
conduct a route reconnaissance.  The scout platoon leader 
will do finer level planning, organizing the platoon’s 
sections of vehicles and assigning commands to each 
section leader to do reconnaissance of different areas along 
the route while maintaining security.  Each section leader 
will evaluate the environment to provide detailed tactical 
goal paths for each of his vehicles, coordinating their 
movement by the use of detailed motion commands to 
control points along with security overwatch commands.  
Each vehicle, in turn, performs detailed sensory processing 
to carry out careful analysis of the terrain in context of the 
mission, security, stealth, and traversability.  Each vehicle 
then decides its optimal real-time path.  If some aspect, such 
as a water obstacle, constrains the vehicle from following 
the general goal path laid out by the section leader, the 
vehicle does reconnaissance, moves to a secure point, and 
reports to the section leader.  If the constraint affects the 
operation of the entire section (e.g. the water obstacle 
stretches across the entire area that the section is assigned), 
then the section leader coordinates his vehicles to do 
reconnaissance and to take up secure positions.  The section 
leader then reports to the platoon leader.   
 
These scenarios provide a rich set of knowledge of 
organizational structure, activities, commands, rules, status, 

sensory processing, objects and world states to be 
recognized, adaptation to events, and procedures required 
for successful execution. 
 
2.3.  Extracting Information Requirements 

Although the RCS approach uses state tables to represent 
the information, the representation within the ontology does 
not necessarily need to be captured within state tables as 
long as no information is lost. Table 1 shows a small piece 
of a state table representation that was developed from the 
RCS methodology for the scenario described above.  The 
left column shows the condition that must be true for an 
action to occur. The notation S# notates a state value. For 
example, in the first line, the system must be in state 4 and 
the condition “Scout Platoon Ready to Conduct Route 
Recon” must be true for the action “Scout Platoon Conduct 
Route Reconnaissance” to occur. When the action is 
executing, the system will change over to state 5 (S5).  
 

Table 1 - Excerpt from a RCS State Table 
Conduct Tactical Road March To Assembly Area 

Condition Action 
… … 
S4 Scout Platoon Ready to 
Conduct Route Recon 

S5 Scout Platoon Conduct 
Route Reconnaissance 

S5 Quartering Party Ready 
to Organize Assembly Area 

S6 Quartering Party Follow 
Recon Platoon to Assembly 
Area 

S6 Quartering Party Clear of 
Start Point 

S7 Main Body and Trail Party 
Prepare for Road March 

S7 Main Body and Trail 
Party Recon to Start Point 
Done 

S8 Troop Prepare Detailed 
Movement Plans 

S8 Scout Platoon Route 
Recon Done 

S9 Scout Platoon Establish 
Assembly Area Security 

S9 Quartering Party at 
Release Point 

S10 Quartering Party Conduct 
Area Recon of Assembly Area 

S10 Quartering Party Area 
Recon of Assembly Area 
Done 

S11 Quartering Party Organize 
Assembly Area 

S11 Quartering Party Status 
Assembly Area Suitable 

S12 First Main Body Unit 
Move Into Road March 
Formation 

S12 Main Body Unit At Start 
Point 

S12 Main Body Unit Execute 
Tactical Road March 
Next Main Body Unit Move 
Into Road March Formation 

S12 Last Main Body Unit at 
Start Point 

S13 Main Body Unit Execute 
Tactical Road March 
Trailing Party Move Into Road 
March Formation 

… … 
 
 

3. THE IGV ONTOLOGY 
3.1. Ontology Language 

We decided to use the OWL-S upper ontology [8] as the 
underlying representation for the IGV Ontology in order, 
among other reasons, to document RCS in a more open 
XML (eXtensible Markup Language) format. OWL-S is a 



service ontology, which supplies a core set of markup 
language constructs for describing the properties and 
capabilities of services in an unambiguous, computer-
intepretable format.  OWL-S, which is being developed by 
the Semantic Web Services arm of the DARPA Agent 
Markup Language (DAML) program, is based on the OWL 
[5]. OWL is an extension to XML and RDF (Resource 
Description Framework) schema that defines terms 
commonly used in creating a model of an object or process. 
OWL is a World Wide Wide Consortium (W3C) 
recommendation, which is analogous to an international 
standard in other standards bodies. 
 
OWL-S is structured to provide three types of knowledge 
about a service (Figure 2), each characterized by the 
question it answers:  
 
• What does the service require of the user(s), or other 

agents, and provide for them? The answer to this 
question is given in the ``profile.'' Thus, the class 
SERVICE presents a SERVICEPROFILE  

• How does it work? The answer to this question is given 
in the ``model.'' Thus, the class SERVICE is 
describedBy a SERVICEMODEL  

• How is it used? The answer to this question is given in 
the ``grounding.'' Thus, the class SERVICE supports a 
SERVICEGROUNDING. 

 
Later in this paper, we will show how we use these OWL-S 
concepts to model a tactical behavior for an intelligent 
ground vehicle. 
 
3.2.  Tools 

Before the ontology can be built, a decision was made as to 
which tool (or set of tools) should be used to enter, capture, 
and visualize the ontology. For this work, we decided to use 
Protégé [7]. Protégé is an ontology editor, a knowledge-base 
editor, as well as an open-source, Java tool that provides an 
extensible architecture for the creation of customized 
knowledge-based applications. Protégé was chosen due to 
its strong user community, its ability to support the OWL 
language (discussed below), its ease of use (as determined 
by previous experience), and its ability to be extended with 
plug-ins such as visualization tools (also discussed below). 

 
3.3. Using OWL-S To Model the Scenario 

Both the RCS methodology and the OWL-S upper ontology 
are based on the concept of agents, service that the agents 
can perform, and procedures that the agents follow to 
perform the services. As such, there is a very clean mapping 
between the information that comes out of the RCS 
methodology and the OWL-S upper ontology. In this 
section, we will describe that mapping. 
 
The first step involved setting up the agent hierarchy. In the 
domain we are dealing with (a light Cavalry troop), we 
designed an agent hierarchy as shown in Figure 3. A 
detailed description of this hierarchy is outside the scope of 
this paper. In OWL-S, we modeled all of these agents as 
subclasses of the IGVAgent class, which is a subclass of the 
ServiceResource class defined in the OWL-S upper 
ontology. We also specified in the constraints for each class 
who each agent can send external service requests to and 
who they can received them from. 
 
The next step involved setting up the services and processes. 
Any activity that can be called by another agent is 
considered a service in OWL-S. Any activity that the agent 
performs internally that cannot be externally called is called 
a process. As such, we model “Conduct A Tactical Road 
March to an Assembly Area” as a service that is provided by 
a Troop agent (and can be called by a Squadron agent).  The 
Troop agent can call services provided by other agents, such 
as shown by the first action in Table 1 (Scout Platoon 
Conduct Route Reconnaissance). In this example, we 
defined a service called “Conduct Route Reconnaissance” 
and associated that service with the Scout Platoon agent. 
 
The state table in Table 1 shows an excerpt of the process 
that an agent (in this case, the Troop agent) should follow 
when executing the “Conduct a Tactical Road March to 
Assembly Area” service. This process is captured in OWL-S 
as a process model (as described in Section 3.1). The 
process model includes the steps that must be accomplished 
to carry out the service, and the ordering constraints on 

 
Figure 2 - OWL-S Ontology Structure 

 
Figure 3 - Agent Hierarchy 
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those steps. Each step can be performed internally by the 
agent or could involve making an external service request (a 
service call) to another agent. The ordering of the steps in 
Table 1 is shown using the next possible state indications 
(S#). For example, the second to last action in Table 1 reads 
“S12 Main Body Unit Execute Tactical Road March, Next 
Main Body Unit Move Into Road March Formation.” The 
S12 indicates what the next possible state could be after this 
action is executed. On the left side of the table, there are two 
states that start with S12 (Main Body Unit At Start Point 
and Last Main Body Unit at Start Point). One of these 
conditions has to be true after the “S12 Main Body Unit 
Execute Tactical Road March” action completes executing. 
If the last main body unit is at the start point, then the latter 
state will be true. If not, then the former state will be true.  
This continues until the latter state is true and the state table 
moves to the next state (S13). One can model this as a 
repeat-until sequence (the loop continues until the last main 
body until is at the start point). OWL-S provides a number 
of control constructs that allow you to model just about any 
type of process flow imaginable. We have found that the 
control constructs provided in OWL-S have been sufficient 
to model all of the behaviors we explored.  
 
Not shown in Table 1 but explained in Section 2, conditions 
are a primary information output of the RCS methodology 
(Step 4). The series of conditions shown in Figure 1 explain 
how a given state in the state table is determined to be true. 
OWL-S 1.0 provides a stub for conditions, but does not 
elaborate on how they are constructed. As such, we have 
developed our own mechanism for representing conditions 
based, in part, upon Xquery and Xpath [3]. A description of 
the constructs used to capture the conditions is outside of 
the scope of this paper. OWL-S 1.1 (released in October, 
2004) allows mechanisms to use external languages (e.g., 
Semantic Web Rules Languages (SWRL) [6], and others) to 
specify conditions. Future work will migrate the current 
condition approach to these external languages specification 
recommended in OWL-S 1.1. 
 
Also not shown in Table 1 but explained in Section 2, 
environmental entities and their attributes are another 
primary output of the RCS methodology. These include 
other vehicles, bridges, vegetation, roads, water bodies; 
anything that is important to perceive in the environment 

relative to task that is being performed. We have started to 
build an environment ontology in OWL-S from the bottom 
up (i.e., including only entities that prove to be important 
based on the output of the RCS methodology). However we 
are currently starting to explore existing environment 
ontologies that currently exist to see what we can leverage. 
 
3.4. Organizing the Knowledge 

Due to the sheer size of the ontology, we have taken the 
approach of organizing the knowledge into namespaces. A 
namespace is a tag prefixed to the name of the class or 
instance that separates the knowledge in the ontology into 
“pieces,” where each piece represents a group of like 
concepts. Numerous namespaces can be imported into a 
single ontology and a single namespace can be reused in 
multiple ontologies. The contents of namespaces are often 
stored in a separate files. 
 
For this effort we have identified a set of five high-level 
namespaces that build off of the concepts presented in 
OWL-S (shown in Figure 4), namely: 
 
• Basic – data structures to capture abstract, highly 

reusable concepts (e.g., location, spatial relations) 
• Behavior – data structures which help to describe 

services, agents, and conditions (e.g., and-conditions, 
or-conditions, external service requests) 

• Military Concepts – data structures to capture common 
concepts within military procedures (e.g., assembly 
area, control points, troops) 

• Environment – data structures to capture environmental 
concepts (e.g, water bodies, shrubs, weather conditions) 

• Military Equipment – data structures to capture 
information about the equipment that the military uses 
(e.g., communication devices, weapons, measuring 
devices) 

 
In addition, we have adopted the approach that we would 
define a separate namespace for every agents’ services and 
processes in every tactical behavior. For example, in the 
“Conduct a Tactical Road March to an Assembly Area” 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Namespaces 
 

Figure 5 - OWL-S Visualization Tool 
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tactical behavior, we have defined the services and 
corresponding process models for most of the agents shown 
in Figure 3. As such, we would have a namespace call 
Troop-ConductTacticalRoadMarchToAA, Platoon-
ConductTacticalRoadMarchToAA, etc. 
 
3.5. Visualization of the Ontology 

While presenting this work to our funding sponsors, it 
quickly became obvious that we needed a better way to 
display the information in the ontology. A whole bunch of 
windows with a small amount of text in each didn’t work 
well. As mentioned earlier, one of the reasons we chose 
Protégé was its ability to be extended using “plug-ins.” A 
plug-in is a piece of code that performs a given functionality 
that can be incorporated into Protégé. We developed a 
visualization tool based upon the open source GraphViz 
program [4] that allows us to graph OWL-S models. A 
snapshot of the visualization tool, shown in Figure 5, shows 
process flow (dark arrows) and data flow (light arrows).  
 

4. CURRENT STATUS  
To date, service models have been developed for the 
following agents: troop, platoon, section, vehicles, mobility, 
propulsion, engine controller, engine, surveillance, and 
sensor subsystem (as shown in Figure 3). All of the service 
models are currently focused solely on the scenario 
described in Section 2.2.  We have only done one strand of 
this scenario (e.g., we elaborated one service in each level of 
the hierarchy, although there were almost always many 
services that each agent may have to perform to accomplish 
the overall goal of “Conducting a Tactical Road March to 
An Assembly Area.”) Also, this one scenario represents one 
of hundreds, if not thousands, of tactical behaviors that an 
army soldier is expected to be able to perform. It is clear 
that, as the details of this scenario is further modeled and 
more scenarios are explored, the size of the ontology will 
grow to be very large. At the time when this document was 
written, we have modeled 489 classes, 213 properties 
(attributes), and 2674 instances.  
 

5. CONCLUSION 
In this paper, we describe an ongoing effort to develop an 
IGV Ontology for the purpose of capturing knowledge 
about tactical behaviors to facilitate intelligent ground 
vehicle development and execution. The ontology is being 
built using the Protégé environment and is based upon the 
OWL-S upper ontology.  
 
Through the development of this ontology, it has become 
apparent that the applications of a neutral and well-defined 
representation and tactical behaviors is far-reaching above 
and beyond that of controlling autonomous vehicles.  Some 
of the potential communities that have been identified 
include: 
• Material Acquisition Community: Documenting 

behavioral requirements for manned, aided, and 
unmanned systems; and analyzing the 

completeness/consistency of requirements and 
predicting the performance of systems developed to 
meet those requirements.  

• Vendor Community: Unambiguously interpreting 
behavioral requirements; and rapid development of 
simulation/prototypes to evaluate design alternatives. 

• Training Community: Availability of machine-readable 
sources of tactical knowledge for automatic generation 
of training materials and training scenarios 

 
Initial results of this effort have shown that: 
• Ontologies appear to be an excellent approach for 

capture information in a computer-interpretable format 
about tactical behaviors 

• The RCS methodology has provided information 
requirements to the ontology at a level of detail that 
greatly facilitates the ontology development process. A 
large part of building any type of ontology is extracting 
the information requirements that must be represented. 
The RCS methodology directly addresses this need. 

• OWL-S provide a very nice mapping to the RCS 
methodology and serves as an excellent upper ontology 
to represent tactical behaviors  
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